

ciated with bark beetles at several Canadian Forestry Service Laboratories in Canada.

Dr. Whitney is a member of the Mycological Society of America, the Society of Invertebrate Pathology, and the Society of The Sigma Xi.

+

M. M. Z. Khardly received the B.Sc. degree in electrical engineering from Cairo University in 1948, and the Ph.D. degree from the University of London (Imperial College) in 1953.

At present, he is Professor of Electrical Engineering, University of British Columbia, Canada. His previous research included work on artificial dielectrics, microwave plasma diagnostics, surface waveguides, inhomogeneous and nonreciprocal lines. Present interests include microwave and millimeter-wave propagation in the lower atmosphere with special emphasis on precipitation, and industrial applications of microwaves.

Dr. Khardly is a member of the Institution of Electrical Engineers, London, England.

Exposure of Human Mononuclear Leukocytes to Microwave Energy Pulse Modulated at 16 or 60 Hz

NORBERT J. ROBERTS, JR., SOL M. MICHAELSON, SENIOR MEMBER, IEEE, AND SHIN-TSU LU

Abstract—Human mononuclear leukocytes were exposed to 2450-MHz microwaves pulse modulated at 16 or 60 Hz, at specific absorption rates up to 4 mW/ml. Such exposures produced no detectable effects on leukocyte viability, or on unstimulated or mitogen-stimulated DNA synthesis or total protein synthesis. The data provided no evidence that exposure to pulse-modulated microwaves is more likely to alter human leukocyte function than is exposure to continuous waves at equivalent energy levels.

I. INTRODUCTION

ALL INDIVIDUALS are exposed to microwave energies to variable degrees. Studies by several investigators raised the possibility that the immunocompetent cells of humans are particularly susceptible to microwaves [1]–[3]. These studies were admitted by some of the authors to be poorly reproducible and nonquantitative. Many animal systems have been studied, but the species, microwave power intensities, environmental conditions, and other factors have varied so widely that extrapolation to humans would be exceedingly difficult, even if appropriate [4], [5].

In a previous report, we provided data regarding exposure of human leukocytes to microwave energies (continuous wave) at specific absorption rates (SAR's) up to 4 mW/ml [6]. Such exposures resulted in no detectable

effects on viability or on unstimulated or stimulated DNA, RNA, total protein, or interferon synthesis by human mononuclear leukocytes. In contrast to the studies cited above, our results were highly reproducible.

More recently, investigators have reported that exposure to pulse-modulated microwaves, but not to the unmodulated carrier wave at an equal intensity, alters function of a murine cytotoxic leukocyte line [7]. The modulation frequencies implicated included 16 Hz and especially 60 Hz. Some of the earlier studies regarding effects on human leukocytes used pulse-modulated microwaves [1], [3].

The studies reported here were performed to determine whether human leukocytes are affected by exposure to microwave energies pulse modulated at 16 or 60 Hz. Such exposures to microwave energy, at specific absorption rates up to 4 mW/ml, resulted in no detectable effects on viability, on unstimulated or stimulated DNA, or total protein synthesis by human mononuclear leukocytes. Our results provided no evidence that exposure to pulse-modulated microwaves is more likely to alter human leukocyte function than is exposure to continuous waves at equivalent energy levels.

II. MATERIALS AND METHODS

A. Cell Source and Collection of Blood

Peripheral venous blood was obtained by venipuncture from healthy young adult donors (five male and seven female, age range 24–35 years) who were taking no medi-

Manuscript received October 12, 1983; revised March 10, 1984. This work was supported by the U.S. Air Force School of Aerospace Medicine and Aeronautical Systems Division under Contract F33615-83-K-0609.

The authors are with the Department of Medicine (NJR, SMM) and the Department of Radiation Biology and Biophysics (SMM, STL), University of Rochester School of Medicine, Rochester, NY 14642.

cation at the time of the study. Mononuclear leukocytes were obtained from the heparinized whole blood by Ficoll-Hypaque sedimentation [8]. Mononuclear leukocytes obtained by this method consist of 70–80 percent lymphocytes and 20–30 percent monocytes [9]; both cell types are required for optimal responses to mitogens.

Except as noted in the following, leukocyte cultures were maintained in medium 199 (Gibco, Grand Island, NY) with modified Earle's salts with glutamine, aqueous penicillin G (100 units/ml), and streptomycin (50 $\mu\text{g}/\text{ml}$). The medium was further supplemented with 10-percent autologous serum. For studies of total protein synthesis, leukocyte cultures were maintained in leucine-free MEM (Gibco, Grand Island, NY).

B. Exposure and Sham Exposure to Microwaves

The mononuclear leukocytes were exposed for 2 h in a waveguide system to 2450-MHz microwaves at specific absorption rates (SAR's) from 0.29 to 4 mW/ml. Microwaves were pulse-modulated at 16 or 60 Hz (duty cycle = 0.5).

The waveguide system used in these studies has previously been described in detail [10]. Exposure and sham-exposure waveguides are located within a water-jacketed, 37°C CO_2 incubator. Temperature inhomogeneity within the cultures is prevented by continuous shaking of the shelf upon which the waveguides rest. Exposures and sham exposures were monitored continuously by use of Vitek Electrothermia nonprotruding probes (Vitek, Inc., Boulder, CO). No attempt was made to counteract microwave-induced heating of the leukocyte cultures, since we wished to observe any potential microwave-induced effects, thermal or otherwise.

The SAR's were determined by analysis of steady-state temperature increments, ΔT_{ss} [11]. The SAR was the product of: the specific heat (0.97 cal/ $^{\circ}\text{C}/\text{g}$); the steady-state temperature increment ($^{\circ}\text{C}$); and the cooling constant (0.0838/min). The SAR's (in milliwatts/milliliter) in this exposure system could be estimated by the product: $5.67 \times \Delta T_{ss}$. During prolonged exposures, changes in the thermal environment were expected. The relation between the SAR and the steady-state temperature increment was best represented by a constant (4.63), determined empirically by use of culture medium exposed at absorbed doses between 5 and 45 mW/ml. The changes in steady-state temperature (mean \pm S.E.) of cultures exposed to microwaves at SAR's of 0.29 and 4 mW/ml were $0.03^{\circ}\text{C} \pm 0.03$ and $1.04^{\circ}\text{C} \pm 0.06$, respectively.

C. Assays of Leukocyte Viability

Leukocyte viability was determined, from 1 to 7 days after exposure or sham exposure to microwaves, by use of total cell counts and assays for percent of cells able to exclude trypan blue dye or ethidium bromide [9]. The assays of leukocyte function (described in the following) provided additional and even more substantial evidence

of leukocyte viability. Mitogen-stimulated lymphocyte transformation responses of human mononuclear leukocytes requires participation of both viable monocytes and viable lymphocytes [9].

D. Assays of DNA and Total Protein Synthesis

Unstimulated and mitogen-stimulated DNA and total protein synthesis by the mononuclear leukocytes were assayed using established methods, by cellular incorporation of the tritiated precursors thymidine and leucine, respectively [6], [9], [12]. In brief, mononuclear leukocytes were added to quadruplicate wells of sterile microtiter plates (Costar, Cambridge, MA) at a concentration of 5×10^5 cells/ml (1×10^5 cells per well). To the cell cultures were added medium alone, or medium containing phytohemagglutinin (PHA)-M (Difco, Detroit, MI). The final volume of the cultures was 0.2 ml per well. PHA was added at an optimal concentration of 160 $\mu\text{g}/\text{ml}$, shown to yield maximum lymphocyte transformation responses with control mononuclear leukocytes [9], [13], and at a representative suboptimal concentration (20 $\mu\text{g}/\text{ml}$). Microtiter plates were then incubated at 37°C in 5-percent CO_2 and air. Cultures were pulsed with the tritiated precursor for the terminal 5 h of incubation, and were harvested with a semiautomatic cell harvester (Brandel, Inc., Gaithersburg, MD). Samples were counted with a liquid scintillation counter. Cells were pulsed and harvested from immediately ("zero" days) to 5 days after exposure or sham exposure to microwaves. For each individual experiment, arithmetic counts per minute (c/min) of quadruplicate cultures were determined.

The absolute counts per minute of tritiated precursor incorporated by the normal (control) PHA-stimulated cells of different individuals varied, as previously established [13]. Within each individual experiment, however, the relative responses of microwave-exposed and sham-exposed mononuclear leukocytes were consistent.

E. Statistical Analyses

Analysis of variance and Student's t-test were used for analysis of the data. There were no significant differences between microwave-exposed leukocytes and sham-exposed leukocytes for any of the assays presented in the Results.

III. RESULTS

A. Leukocyte Viability

In initial studies, mononuclear leukocytes were exposed to 16-Hz pulse-modulated microwaves at a SAR of 0.29 mW/ml, an energy level reported to be associated with pulse-modulated microwave-induced alterations in other functions [14]. Exposure of the leukocytes at such an SAR produced no significant changes in cell viability for up to one week after exposure (data not shown). Equivalent viability of microwave-exposed and sham-exposed leuko-

TABLE I
TOTAL Viable MONONUCLEAR LEUKOCYTES AFTER EXPOSURE TO
MICROWAVE ENERGY PULSE MODULATED AT 16 Hz
(SAR = 4 mW/ml)^a

Exposure	Days After Exposure			
	1	2	4	7
Microwave	112 ± 24 ^b	101 ± 21	82 ± 19	84 ± 18
Sham	108 ± 18	114 ± 21	85 ± 17	84 ± 16

^aViability was assessed by the ability of the cells to exclude trypan blue dye and ethidium bromide.

^bData represent mean total number of viable cells (total cells × percent viable × 10⁻⁴, ± S.E.).

TABLE II
TOTAL Viable MONONUCLEAR LEUKOCYTES AFTER EXPOSURE TO
MICROWAVE ENERGY PULSE MODULATED AT 60 Hz
(SAR = 4 mW/ml)^a

Exposure	Days After Exposure			
	1	2	4	7
Microwave	93 ± 19 ^b	91 ± 12	64 ± 6	59 ± 5
Sham	102 ± 11	86 ± 7	63 ± 3	60 ± 5

^aViability was assayed by the ability of the cells to exclude trypan blue dye and ethidium bromide.

^bData represent mean total number of viable cells (total cells × percent viable × 10⁻⁴, ± S.E.).

cytes was also noted with exposure of the cells to 16 Hz (Table I) or to 60 Hz (Table II) pulse-modulated microwaves at an SAR of 4 mW/ml.

B. DNA and Total Protein Synthesis

Unstimulated and mitogen-stimulated DNA and total protein synthesis were first examined after exposure of the mononuclear leukocytes to microwaves at an SAR of 0.29 mW/ml, pulse-modulated at 16 Hz. Such exposures resulted in no alterations in leukocyte function (data not shown).

In further experiments, mononuclear leukocytes were exposed to microwaves at an SAR of 4 mW/ml, again pulse modulated at 16 Hz. The microwave-exposed and sham-exposed leukocytes subsequently showed equivalent unstimulated and mitogen-stimulated DNA synthesis (Fig. 1) and total protein synthesis (Fig. 2).

Leukocytes exposed to microwaves at a SAR of 4 mW/ml, pulse-modulated at 60 Hz, were also assayed for DNA and total protein synthesis. There were no significant differences between the microwave-exposed and sham-exposed mononuclear leukocytes in unstimulated or mitogen-stimulated DNA synthesis (Fig. 3) or total protein synthesis (Fig. 4).

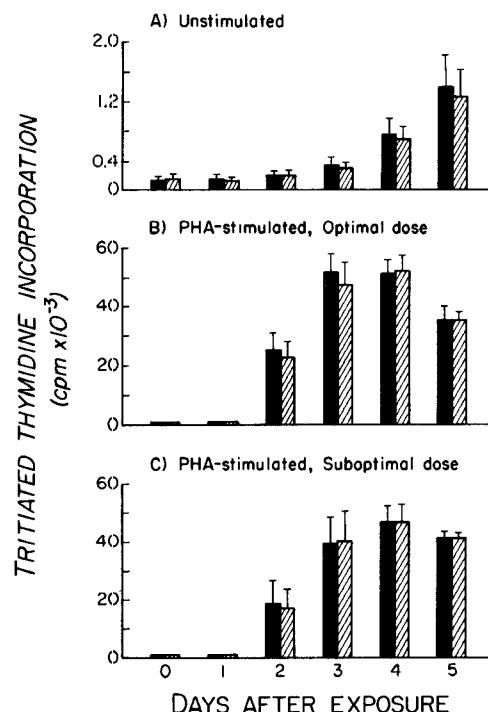


Fig. 1 DNA synthesis by microwave-exposed (■) and sham-exposed (▨) human mononuclear leukocytes. Cells were exposed to 2450-MHz microwaves, pulse modulated at 16 Hz, at a SAR of 4 mW/ml. Unstimulated DNA synthesis and DNA synthesis stimulated with the optimal and suboptimal concentrations of PHA are shown. Columns indicate mean c/min tritiated thymidine incorporation, ± S.E.

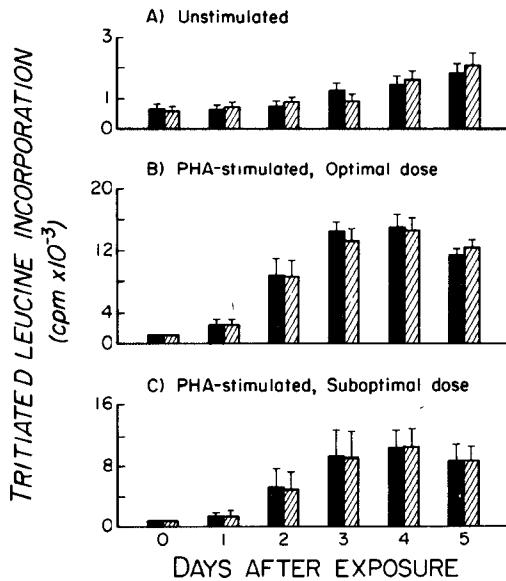


Fig. 2 Total protein synthesis by microwave-exposed (■) and sham-exposed (▨) human mononuclear leukocytes. Cells were exposed to 2450-MHz microwaves, pulse-modulated at 16 Hz, at a SAR of 4 mW/ml. Unstimulated total protein synthesis and total protein synthesis stimulated with the optimal and suboptimal concentrations of PHA are shown. Columns indicate mean c/min tritiated leucine incorporation, ± S.E.

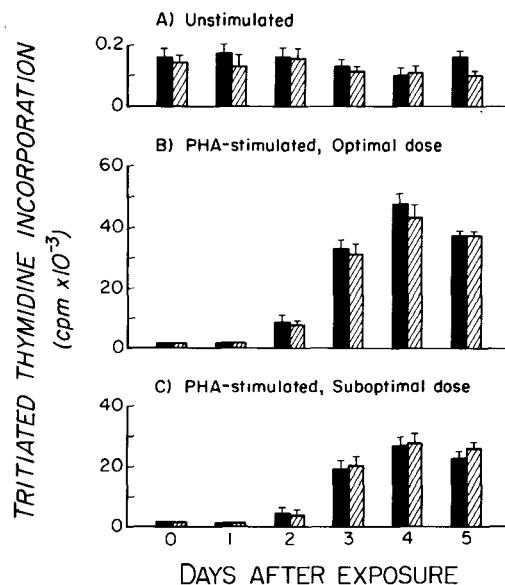


Fig. 3 DNA synthesis by microwave-exposed (■) and sham-exposed (□) human mononuclear leukocytes. Cells were exposed to 2450-MHz microwaves, pulse-modulated at 60 Hz, at a SAR of 4 mW/ml. Unstimulated DNA synthesis and DNA synthesis stimulated with the optimal and suboptimal concentrations of PHA are shown. Columns indicate mean c/min tritiated thymidine incorporation, \pm S.E.

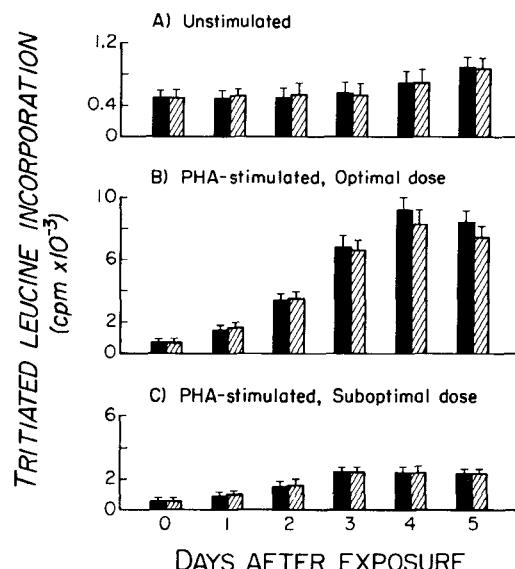


Fig. 4 Total protein synthesis by microwave-exposed (■) and sham-exposed (□) human mononuclear leukocytes. Cells were exposed to 2450-MHz microwaves, pulse-modulated at 60 Hz, at a SAR of 4 mW/ml. Unstimulated total protein synthesis and total protein synthesis stimulated with the optimal and suboptimal concentrations of PHA are shown. Columns indicate mean c/min tritiated leucine incorporation, \pm S.E.

IV. DISCUSSION

The data from these studies, combined with our earlier observations [6], provide no evidence for a differential susceptibility of human mononuclear leukocytes to microwave energy that is pulse-modulated at 16 or 60 Hz. Microwave-exposed and sham-exposed leukocytes showed equivalent viability, and equivalent unstimulated or mitogen-stimulated DNA and total protein synthesis.

Effects of sinusoidally amplitude-modulated microwaves on leukocyte cytotoxic function have been reported by others, using a murine lymphoma target cell line and a murine cytotoxic T-lymphocyte line [7]. Cytotoxicity was reversibly inhibited, with recovery by 12.5 h or less after exposure (measured field intensity = 10 mW/cm²). The detection and magnitude of inhibition varied with the modulation frequencies tested (from 0 to 100 Hz). Suppression of cytotoxicity was maximum at 60-Hz modulation, with smaller and inconsistent effects at 16 Hz. Approximately 20-percent inhibition was reported with 60-Hz modulation. The effector cell:target cell ratio, or ratios, were not reported, and could not be determined from the description of methods. It is unclear whether suppression of cytotoxicity was observed at all effector:target cell ratios, or was inconsistent. Of note was the significant variability of release of radiolabeled chromium in assays using established cell lines for targets and for effectors: c/min released, from experiments with equivalent microwave exposures, ranged from 885 to 5582 c/min. It is unknown whether human leukocyte cytotoxic functions would be altered by exposure to pulse-modulated microwaves; conclusions derived from murine investigations cannot be ascribed routinely to humans [4].

The current studies do not exclude potential microwave-induced effects on human leukocyte function resulting from exposure at similar SAR's, but applied by almost innumerable different possible wave forms (frequencies, modulations, etc.). The literature regarding microwaves includes animal studies reporting beneficial effects attributed to exposure, as well as animal studies reporting deleterious effects, over a broad range of SAR's (4). The ubiquitous distribution of microwave energy, and the potential differences between animal models and humans suggest that further investigations with human leukocytes and other cells are warranted.

ACKNOWLEDGMENT

The authors thank A. Katlic and Q. A. Nguyen for skilled technical assistance, and M. A. Christy for aid in preparation of the manuscript.

REFERENCES

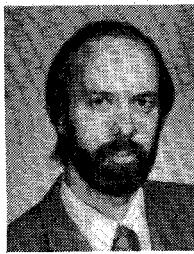
- [1] P. Czerski, "Microwave effects on the blood-forming system with particular reference to the lymphocyte," *Ann. N.Y. Acad. Sci.*, vol. 247, pp. 232-242, 1975.
- [2] W. Stodolnick-Barańska, "Lymphoblastoid transformation of lymphocytes *in vitro* after microwave irradiation," *Nature*, vol. 214, pp. 102-103, 1967.
- [3] _____, "The effects of microwaves on human lymphocyte cultures," in *Biologic Effects and Health Hazards of Microwave Radiation*, P. Czerski, K. Ostsrowski, M. L. Shore, C. H. Silverman, M. J. Suess, and B. Waldeskog, Eds. Warsaw: Polish Medical Pub., 1974, pp. 189-195.
- [4] N. J. Roberts, Jr., "Radiofrequency and microwave effects on immunological and hematological systems," in *Biological Effects and Dosimetry of Nonionizing Radiation: Radiofrequency and Microwave Energies*, M. Grandolfo, S. M. Michaelson, and A. Rindi, Eds. New York: Plenum, 1983, pp. 429-459.
- [5] S. M. Michaelson, "Microwave biological effects: An overview," *Proc. IEEE*, vol. 68, pp. 40-49, 1980.
- [6] N. J. Roberts, Jr., S-T Lu, and S. M. Michaelson, "Human leukocyte functions and the U.S. safety standard for exposure to radio-

frequency radiation." *Science*, vol. 220, pp. 318-320, 1983.

[7] D. B. Lyle, P. Schechter, W. R. Adey, and R. L. Lundak, "Suppression of T-lymphocyte cytotoxicity following exposure to sinusoidally amplitude-modulated fields," *Bioelectromagn.*, vol. 4, pp. 281-292, 1983.

[8] A. Böyum, "Isolation of mononuclear cells and granulocytes from human blood," *Scand. J. Clin. Lab. Invest.*, vol. 21 (suppl. 97), pp. 77-89, 1968.

[9] N. J. Roberts, Jr., and R. T. Steigbigel, "Effect of *in vitro* virus infection on response of human monocytes and lymphocytes to mitogen stimulation," *J. Immunol.*, vol. 121, pp. 1052-1058, 1978.

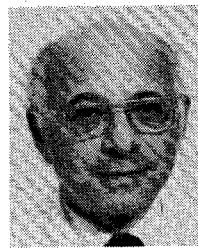

[10] S-T Lu, N. J. Roberts, Jr., and S. M. Michaelson, "A dual vial waveguide exposure facility for examining microwave effects *in vitro*," *J. Microwave Power*, vol. 18, pp. 121-131, 1983.

[11] J. W. Allis, C. F. Blackman, M. L. Fromme, and S. G. Benane, "Measurement of microwave radiation absorbed by biological systems. I. Analysis of heating and cooling data," *Radio. Sci.*, vol. 12 (suppl. 6), pp. 1-8, 1977.

[12] W. Wiktor-Jedrzejczak, A. Ahmed, P. Czerski, W. M. Leach, and K. W. Sell, "Effect of microwaves (2450-MHz) on the immune system in mice: Studies of nucleic acid and protein synthesis," *Bioelectromagn.*, vol. 1, pp. 161-170, 1980.

[13] N. J. Roberts, Jr., "Variability of results of lymphocyte transformation assays in normal human volunteers. Responses of mononuclear leukocytes to mitogen stimulation," *Am. J. Clin. Pathol.*, vol. 73, pp. 160-164, 1980.

[14] W. R. Adey, S. M. Bawin, and A. F. Lawrence, "Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex," *Bioelectromagn.*, vol. 3, pp. 295-307, 1982.


Norbert J. Roberts, Jr. was born in Cambridge, MA, on August 31, 1944. He received the B.A. degree in philosophy from Haverford College, Haverford, PA, in 1966, and the M.D. degree from New York University School of Medicine, New York, in 1971. His postdoctoral training was in medicine, at St. Luke's Hospital Center of the Columbia University College of Physicians and Surgeons, New York, NY, and in infectious diseases at the University of Rochester School of Medicine, Rochester, NY.

Since 1976, he has been on the faculty of the University of Rochester School of Medicine. He is currently an Associate Professor of Medicine, engaged in research on human host defense mechanisms, including responses to physical (hyperthermia, microwaves) and biological (respiratory viruses) agents.

Dr. Roberts is a member or fellow of several societies, including the American Society for Microbiology, the American Federation for Clinical Research, the American Association of Immunologists, and the Bioelectromagnetics Society.

Environmental Health Sciences NIH/HEW. He is an Associate Editor for *Radiation Research*, member of the Editorial Board of the *International Journal of Radiation and Environmental Biophysics*, as well as an Associate Editor for Medical and Biological Sciences, the *Journal of Microwave Power*; editorial board—*Bioelectromagnetics*.

Dr. Michaelson is a member of the American Physiological Society, Sigma XI, Radiation Research Society, Health Physics Society, Diplomate of the American College of Laboratory Animal Medicine, and of the American College of Veterinary Toxicologists.

Sol M. Michaelson (SM'79) is a Professor of Radiation Biology and Biophysics and an Associate Professor of Medicine and of Laboratory Animal Medicine of the School of Medicine and Dentistry and is on the faculty of the Biomedical Engineering Program of the College of Engineering of the University of Rochester, Rochester, NY. His major research interests are physiologic and pathophysiologic aspects of electromagnetic radiation, having published over 150 papers in this field. He has been a Consultant and

Advisor to the World Health Organization Regional Office for Europe for health effects on personnel of ionizing radiations and other physical factors. He has been a Consultant to the National Research Council, National Academy of Sciences, and a member of the *ad hoc* Committee of the Navy Non-Ionizing Radiation Research Program and of the *ad hoc* Committee on Electrical Stimulation of the Brain, Committee on Bio-sphere Effects of ELF Radiation, Consultant on National Research Council Commission on Human Resources' Post Research Associateship Program; member of Advisory Committee for Biological Effects of Electric Fields, Electric Power Research Institute, and American National Standards Institute, Committee C95, Radio Frequency Radiation Hazards. He is a Consultant to the US National Council on Radiation Protection and Measurements; Science Advisory Board, U.S. Environmental Protection Agency; Board of Scientific Counselors, National Institute of En-

Shin-Tsu Lu was born in Taipei, Taiwan, on June 13, 1943. He received the B.V.M. degree in veterinary medicine from National Taiwan University, Taipei, Taiwan, in 1968, and the M.S. and Ph.D. degrees in radiation biology from the University of Rochester, Rochester, NY, in 1973 and 1977, respectively.

Since 1972, he has been on the staff of the University of Rochester in the Department of Medicine, Cardiology Unit and Radiation Biology and Biophysics and is presently a Research Associate in the Department of Radiation Biology and Biophysics. He is also associated with the Aerosol Research Laboratory in the same department. His research includes biological effects of ionizing and nonionizing radiation.

Dr. Lu is a member of the Bioelectromagnetics Society.